ACR-Based Retrievals for AMSR-E Validation

Richard Austin, Tristan L'Ecuyer, and Graeme Stephens
Colorado State University

Active/Passive Retrievals

- We are developing a family of radar-based retrievals at CSU
- Retrievals use radar alone or radar combined with one or more passive instruments
- Retrievals use an estimation theory framework (e.g. Rodgers 1976, 2000)
 - Explicit specifications of uncertainties and a priori information
 - Error estimates for all retrieved and derived quantities
 - Influence of measurements vs. a priori based on specified uncertainties
- Synergy between AMSR-E, GPM, CloudSat, etc. has driven multiple applications

Application to AMSR-E validation

- Quantitative validation will largely be correlative, comparing results from several retrievals using independent instruments or algorithms
- Retrieval candidates
 - LWC retrieval (ACR, ACR-MODIS, ACR-AMSR)
 - IWC retrieval (ACR, ACR-MODIS, ACR-AMSR)
 - Light rain retrieval (ACR, ACR-AMSR)
 - Snow retrieval (ACR, ACR-AMSR, ACR-MIR)
 - More complex mixed cases to be attempted later

Cloud Liquid Water Retrieval

- Assumes lognormal drop size distribution
- Assumes number density N_T and width parameter \square_{log} are constant in height
- Retrieves profile of particle size r_g , plus values of N_T and $\square_{log} \Rightarrow$ From these, LWC and effective radius may be derived
- Designed for drizzle-free particle distributions

Retrieval of Snow

- Very preliminary! Based on combination of ACR (95 GHz radar) and MIR/PSR passive (89/150 GHz)
- Assumes exponential distribution $N(D)=N_0 \exp(-\Box D)$
- Assumes N₀ constant in height
- Retrieves profile of distribution parameters ⇒ snow rate

Snow Retrieval Outputs

Upcoming Activities

- Apply LWC and IWC retrievals to Wakasa Bay flight legs where appropriate
- Light rain retrieval (next speaker)
- Comparison to other AMSR products
- Snow retrieval
- Study methods to bridge the cloud-precip gap (e.g. drizzle)